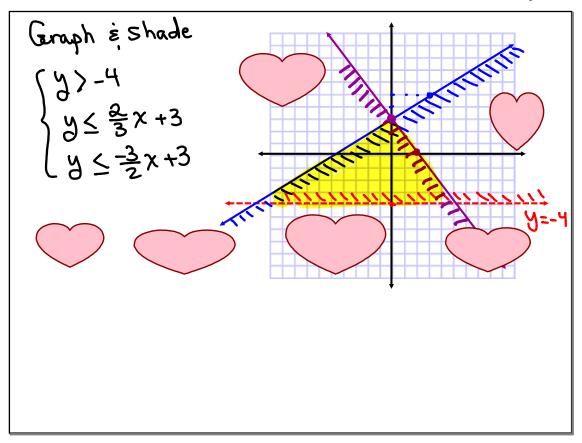

Graph
$$\chi < -4$$

 $\chi - only \rightarrow V.L.$
 ζ shade to left
 ζ dashed line



Graph
$$2x + 3y \ge 6$$

write it in slope-Int form
 $3y \ge -2x + 6$
 $y \ge -\frac{2}{3}x + \frac{6}{3}$
 $y \ge -\frac{2}{3}x + 2$
 $y \ge -\frac{2}{3}x + 2$
Solid
Shade above

$$4x - 3y > 9$$
, Graph & Shade
write in Slope-Int form
 $-3y / 2 - 4x + 9$
 $-3y / 4x + 9$
 $3y < \frac{4}{3}x + 3$
 $y < \frac{4}{3}x - 3$
broken (dashed)
Shade below

Find equation of the line below

$$m = \frac{Rise}{Run} = \frac{-4}{8} = \frac{-1}{2}$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

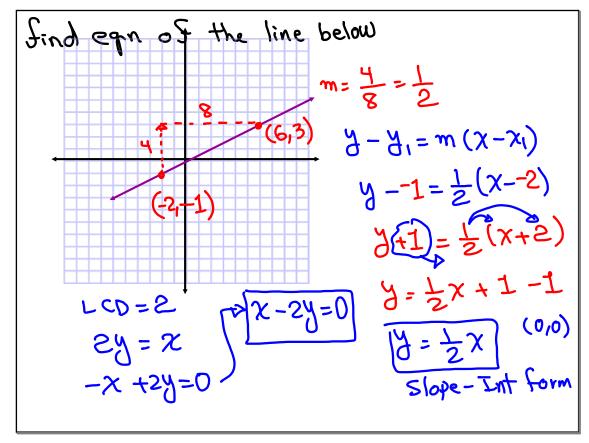
$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$


$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

$$(-2, 4)$$

find the equation of a line
Povallel to
$$3x + 5y = 10$$
 that contains
the point $(-2, -5)$ stand. Form
Parallel lines $5y = -3x + 10$
 \Rightarrow Same slope $y = -\frac{3}{5}x + \frac{10}{5}$
 $y - 5 = -\frac{3}{5}(x - 2)$
 $y + 5 = -\frac{3}{5}(x + 2)$
 $L cD = 5$
 $5y + 25 = -3(x + 2)$
 $5y + 25 = -3x - 6$ slope $y = -\frac{3}{5}x - \frac{31}{5}$

Find eqn of a line that contains

$$(2,-3)$$
 and is perpendicular to the
line $y = \frac{4}{3}x - 1$. Ans in slope-Intform.
Graph both lines.
Perpendicular lines
 \Rightarrow slopes are
opposite reciprocal
 $-\frac{3}{4}$
 $y - 3 = -\frac{3}{4}(x - 2)$
 $y + 3 = -\frac{3}{4}x + \frac{3}{4}$.
 $y = -3x - 6$
 $y = mx + b$
 $y = -\frac{3}{4}x - \frac{6}{4}$
 $y = -\frac{3}{4}x - \frac{6}{4}$
 $y = -\frac{3}{4}x - \frac{6}{4}$
 $y = -\frac{3}{4}x - \frac{3}{2}$
 $y = -3x - 6$
 $4x + By = C$
 $3x + 4y = -6$
 $5 = 14t. form$

Sind equation of a line that contains

$$(-4,5)$$
 and $(1,3)$. Graph the line.
Ans in Slope-Int form and Standard
form.
 $m = \frac{y_1 - y_2}{x_1 - x_2}$ $m = -\frac{2}{5} = 2$
 $= \frac{5-3}{-4-1} = \frac{2}{-5} = -\frac{2}{5}$
 $y - y_1 = m(x - x_1)$ Point-Slope formula
 $y - 3 = -\frac{2}{5}(x - 1)$
 $LCD = 5$
 $5y - 15 = -2(x - 1)$
 $5y - 15 = -2x + 2$
 $y = -\frac{2}{5}x + \frac{11}{5}$
Slope-Int. form

SG 9 is due on Monday.